

Synthesis and magnetic properties of various ferric-oxide phases

Marin Tadić, <u>Marija Perović</u>, Ana Mraković, Dragana Marković, Vladan Kusigerski, Vojislav Spasojević, The Vinca Institute of Nuclear Science, Condensed Matter Physics Laboratory POB 522, 11001 Belgrade, Serbia

Iron-oxide nanoparticles were prepared by sol-gel and reduction precipitation method. The so-obtained samples were characterized by transmission electron microscopy, X-ray powder diffraction and SQUID magnetic measurements. X-ray diffraction, SAED and TEM studies confirm formation of different oxide phases with mean particle diameter in range 4-20 nm. Nanoparticle samples showed different magnetic ordering, from antiferromagnetic to ferrimagnetic. Magnetization measurements indicate typical behaviour of superparamagnetic nanoparticle systems such as existence of blocking temperature, irreversibility of zero-field cooled (ZFC) and field cooled (FC) curves and emergence of magnetic hysteresis below blocking temperature. Typical magnetic properties such as remanent magnetization and coercive field strongly depend on particular ferric-oxide phase. Mr varied from 0.435 emu/g for α -Fe₂O₃ to 11 emu/g for ϵ -Fe₂O₃. Measured values for coercivity were in very wide range, from 200 \tilde{O} for γ -Fe₂O₃ to 17 \tilde{KO} for ϵ -Fe₂O₃.

Preparation route:

Magnetic measurements:

Transmission electron micrograph of α -Fe₂O₃/SiO₂: (a) silica grain with embedded α -Fe₂O₃ nanoparticles; (b) high resolution image of selected grain region; (c) the SAED pattern of the same region

X-ray diffraction spectra of iron oxide particles embedded in a silica matrix heat-treated at the indicated temperature

sample	Т _в (К)	H _c (Öe)	M _r (emu/g)
α –Fe ₂ O ₃	19	610	0,435
ε-Fe ₂ O ₃	28	17000	11
γ -Fe ₂ O ₃	110	200	10

